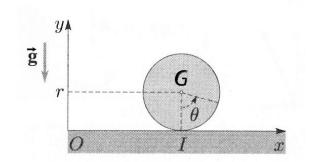
UNIVERSITE PAUL SABATIER Toulouse – L2 Physique


Mécanique des solides

Examen 28 Juin 2012 – Durée 1h30

L'usage des calculatrices et des téléphones portables est interdit.

Etude dynamique et énergétique d'un cerceau

Un cerceau (*C*) de centre *G*, de masse *m*, de rayon r est posé à l'instant initial avec une vitesse du centre de masse $\vec{v}_{G/R} = v_0 \vec{e}_x$ et une vitesse angulaire $\vec{\omega}_{C/R} = -\omega_0 \vec{e}_z$ le long l'axe (*Ox*) d'un référentiel R(Oxyz) où (Oy) est la verticale ascendante.

On considère que $v_0 > 0$, $\omega_0 > 0$ et $v_0 < r\omega_0$.

On notera: \dot{x} et $\dot{\theta}$ respectivement vitesse du centre de masse et vitesse angulaire à $t \neq 0$.

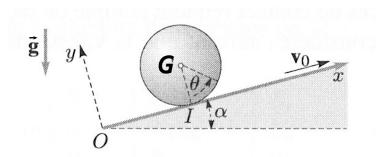
On note g l'intensité du champ de pesanteur terrestre, et μ le coefficient de frottement solide entre le cerceau et le sol.

Partie I : Eléments cinétique du cerceau

- a) Déterminer le moment d'inertie du cerceau par rapport à son axe (Gx).
- b) Etablir les expressions de la quantité de mouvement et du moment cinétique du cerceau à un instant *t* quelconque.

Partie II : Dynamique du cerceau sur le sol

- a) Etablir l'expression de la vitesse de glissement \vec{v}_g qui traduit le contact en I du cerceau sur le sol. Que devient cette expression à t = 0?
- b) Ecrire les équations vectorielles du théorème du centre de masse et du moment cinétique appliqué en G.
- c) En déduire le mouvement du disque à t > 0. Montrer en particulier que s'il y a glissement initial, celui-ci cesse à l'instant t_1 que l'on définira.
- d) Quel est le mouvement de (C) après t_1 ?


Partie III : Energétique du cerceau sur le sol

- a) Evaluer entre t = 0 et $t = t_1$ le travail des actions de contact exercées par l'axe (Ox) sur le cerceau (C).
- b) Retrouver ce résultat par l'application du théorème de l'énergie cinétique.

Partie IV : Dynamique du cerceau sur un plan incliné

On considère à présent le roulement du cerceau posé sans vitesse initiale sur un tapis roulant d'axe (Ox) incliné d'un angle α par rapport à l'horizontale (Ox_0) (cf figure ci-dessous) et se déplaçant à vitesse constante $\vec{v}_{Tapis/R} = v_1 \vec{e}_x$

- a) Donner l'expression de la vitesse de glissement \vec{v}_g qui traduit le contact en I du cerceau sur le tapis roulant. Que vaut cette vitesse à t = 0?
- b) En utilisant les théorèmes de la dynamique, donner les équations différentielles du mouvement.
- c) Déterminer la dérivée par rapport au temps de la vitesse de glissement en fonction de g et de α .

